News

Tetra In Action - May, 2016

Managing the Power Piping in CCGT Plants

Risk of failure and attendant personnel safety concerns are always present when operating highly-pressurized systems.  Over the years, the occurrence of catastrophic events has driven improvements in construction codes and updated recommendations for O&M practices.  As part of this trend, expanded requirements for operations and maintenance (O&M) were recently added to the ASME Code for Power Piping—ASME B31.1.   The “Chapter VII Operation and Maintenance” was created in 2007 to prescribe guidelines that promoted early failure detection and overall safety. This was a fundamental change to the scope of B31.1, which up until then was strictly a design code; going forward, it now serves a dual purpose…


Read the full story by our colleague Robert Rosario, published in Power Magazine here


Dubai: September, 2016 - Boiler & Steam Cycle Knowledge Workshops

Tetra Engineering announces a series of targeted workshops to provide thermal and process plant O&M engineers, managers and operators with a working knowledge in several aspects of the boiler and steam process technology. Drawing on our field experience working at power and process plants throughout the world, the objective is to provide attendees with clear instruction on the operator actions and design issues that can impact reliability, efficiency and operating life.  The programme comprises a set of focused, half-day training modules intended to leave attendees with a practical working knowledge on these issues.  A number of outside experts will join Tetra's senior staff in delivering the workshops.
The course syllabus can be found here.


Technical Tidbits from the Tetra HRSG Inspection Planning Guide

The inspection of drums is a key element in determining the general condition of the waterside pressure boundary of the HRSG components and the quality of the water treatment program.  They are a “window” on what the inside of the water-filled or steam and water-filled tubes and headers in the various pressure circuits (HP, IP or LP) might look like.  Basic inspection is visual, yet often complemented by UT, and PT/MT examinations.
One of the key items of interest is surface passivation.  The HP drum should typically have a dark grey adherent surface layer, characteristic of magnetite, below the maximum waterline.  Above the maximum water line there may be some light red coloration, indicating a mix of magnetite and hematite.  Yet surface color can deceive,  drums with “abnormal” color may simply reflect a specific water chemistry and process condition history.  The experience of the inspector comes into play in these cases, to decide whether what is observed is indicative of a real problem or simply reflects a harmless difference.

DrumInspector
Figure 1 : Senior Engineer Mark Taylor from Tetra’s European office enjoying some quality Steam Drum time during a recent HRSG inspection campaign.

If you are interested in the full version of the HRSG Inspection Planning Guide (2nd edition) contact  Christine Vallon (This email address is being protected from spambots. You need JavaScript enabled to view it. )  or Natalie Vasa (This email address is being protected from spambots. You need JavaScript enabled to view it. )