Resources

Consult our range of free resources.

Contact Us

Technical Guides

Tetra has published a series of guides which are available for ordering.

HRSG Inspection Planning Guide (2nd Edition)

Inspection is part of routine maintenance for any Heat Recovery Steam Generator (HRSG). Visual inspections are performed at regular intervals in accordance with the requirements of regulatory bodies and insurers.Inspection is part of routine maintenance for any Heat Recovery Steam Generator (HRSG). Visual inspections are performed at regular intervals in accordance with the requirements of regulatory bodies and insurers.

HRSG Tube Failure Diagnostic Guide (3rd Edition)

Heat Recovery Steam Generator (HRSG) tubes provide the media for extraction of useful energy from the waste heat in gas turbine exhaust at combined cycle power plants (GT-CCs) or from heat generated by process streams at petrochemical facilities.

Technical White Papers

A selection of technical papers available for reference.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Piping Hangers & Supports

Piping Hangers & Supports

Piping supports and hangers require routine inspection. Interferences with equipment or structures can c...

learn more
Reasons for Inspecting

Reasons for Inspecting

Inspection is part of routine maintenance for any Heat Recovery Steam Generator (HRSG). Visual inspectio...

learn more
Flow Accelerated Corrosion (FAC)

Flow Accelerated Corrosion (FAC)

Background Tube thinning caused by flow-accelerated corrosion (FAC) is one of the most frequent causes of fai...

learn more
Grade 91 Steel

Grade 91 Steel

Background Early failures of components fabricated with Creep Strength Enhanced Ferritic (CSEF) Steels in con...

learn more
Duct Burners

Duct Burners

Excess air in the gas turbine exhaust allows the combustion of additional fuel via supplemental firing in the ...

learn more
HRSG Tube Failure Diagnosis

HRSG Tube Failure Diagnosis

Diagnosis of HRSG tube failure causes is not always straightforward. Sometimes, a relatively clear-cut c...

learn more

Contact Us

To discuss how we might assist you to improve your plant's performance or to maintain its value over time

Contact Us

Papers, Presentations and Articles

Selected papers, presentations and articles from major industry conferences and events.

Title
Author
What do HRSG tube failure statistics tell us?
What do HRSG tube failure statistics tell us?What do HRSG tube failure statistics tell us?
Misha Gadher & Mark Taylor
Modern Power Systems
Counterfeit, Fraudulent and Suspect Items (CFSI) – Steel and HRSGs
Counterfeit, Fraudulent and Suspect Items (CFSI) – Steel and HRSGsCounterfeit, Fraudulent and Suspect Items (CFSI) – Steel and HRSGs
Taylor M.
IMechE HRSG User Group 2022
Adapting Existing Thermal Desalination Plants to Produce Hydrogen
Adapting Existing Thermal Desalination Plants to Produce HydrogenAdapting Existing Thermal Desalination Plants to Produce Hydrogen
Malloy J.
2022 World Utilities Congress
Root Cause Failure Investigation of MSCV Drain Failures
Root Cause Failure Investigation of MSCV Drain FailuresRoot Cause Failure Investigation of MSCV Drain Failures
P. Jackson, A. Wholey, E. Tsai and D. Burns
ASME 2022 Pressure Vessels & Piping Conference
Predicting and Preventing Risk of Vibration Induced Failures in Boilers and Heat Recovery Steam Generators (HRSG)
Predicting and Preventing Risk of Vibration Induced Failures in Boilers and Heat Recovery Steam Generators (HRSG)Predicting and Preventing Risk of Vibration Induced Failures in Boilers and Heat Recovery Steam Generators (HRSG)
Fabricius A., Malloy J., Taylor M., Moelling D.
Proceedings of the ASME 2022 Power Conference

Previous Projects

With over 30 years of experience in power and industrial steam generation services, Tetra Engineering has along history of projects.

CFD Study of HRSG Gas Path, 2015
South East Asia

CFD Study of HRSG Gas Path, 2015

Tetra Engineering  performed a CFD analysis of the HRSG gas path at a CCGT in Asia in collaboration with CFD specialist R&R Consult. The results showed a very uneven flow distribution at base load over the HPHTSH tube sheet, with a higher mass flow located towards the outlet header sections and towards the side walls. The swirling motion of the GT flow results in a different flow pattern for the low load case, compared to the base load case. The flow was more evenly distributed in the longitudinal direction at the SH, but a considerable variation is seen in the span-wise direction. The uneven flow distribution was thought to be a contributing factor to the repeated fatigue failures seen in the boiler over the last couple of years.

Superheater Tube Root Cause Failure Analysis, 2015
South East Asia

Superheater Tube Root Cause Failure Analysis, 2015

Tetra Engineering completed a Tube Failure Analysis of failed SH tubes from a CCGT plant in South East Asia. The results show the following damage mechanisms present: Short-term Creep and Fatigue damage (Creep-Fatigue interaction) Short-term Creep and Stress Corrosion Cracking (SCC) or Hydrogen Embrittlement The fact that short-term creep damage was observed on both of the failed tubes indicates a sudden change in temperature. It was possible that newly discovered damage to the turbine exhaust flow correction device could have allowed a larger mass flow to one side of the boiler (due to swirl influence), increasing the tube temperatures locally and/or increasing local stresses when expansion is prevented, thus accelerating creep damage. The plant had suffered from frequent fatigue failures, with several independent metallurgical analyses over the years confirming thermal fatigue as the previous root cause. No signs of any creep damage had previously been discovered.

Field Assessment of Piping Water Hammer Event, 2014
Middle East

Field Assessment of Piping Water Hammer Event, 2014

Tetra Engineering was asked to assess the situation after a significant water slug/hammer event. Observations made during the site visit showed that the structural members were severely damaged with steel being heavily deformed and torn in some cases.  Piping supports were also severely damaged and would require repair.

LP EVAP Tube Failure Analysis, 2014
Middle East.

LP EVAP Tube Failure Analysis, 2014

Tetra Engineering was asked by a client to help to assess the cause of tube failures in the upper section of the LPEVAP on their HRSG units. The first tube failure was reported in 2010; other failures have followed since then at a rate of two to three per year. At the time of the first failure the plant had been operating for approximately three years. Tetra performed a root cause analysis which included a review of water chemistry logs, boiler simulations using PPSD as well as a FAC Risk Assessment.

Contact Us

To discuss how we might assist you to improve your plant's performance or to maintain its value over time

Contact Us